Wiman’s type inequality for entire multiple Dirichlet series with arbitrary complex exponents
نویسندگان
چکیده
It is proved analogues of the classical Wiman's inequality} for class $\mathcal{D}$ absolutely convergents in whole complex plane $\mathbb{C}^p$ (entire) Dirichlet series form $\displaystyle F(z)=\sum\limits_{\|n\|=0}^{+\infty} a_ne^{(z,\lambda_n)}$ with such a sequence exponents $(\lambda_n)$ that $\{\lambda_n\colon n\in\mathbb{Z}^p\}\subset \mathbb{C}^p$ and $\lambda_n\not=\lambda_m$ all $n\not= m$. For $F\in\mathcal{D}$ $z\in\mathbb{C}^p\setminus\{0\}$ we denote 
 $\mathfrak{M}(z,F):=\sum\limits_{\|n\|=0}^{+\infty}|a_n|e^{\Re(z,\lambda_n)},\quad\mu(z,F):=\sup\{|a_n|e^{\mathop{\rm Re}(z,\lambda_n)}\colon n\in\mathbb{Z}^ p_+\},$
 $(m_k)_{k\geq 0}$ $(\mu_{k})_{k\geq $(-\ln|a_{n}|)_{n\in\mathbb{Z}^p_+}$ arranged by non-decreasing.
 The main result paper: Let $F\in \mathcal{D}.$ If $(\exists \alpha > 0)\colon$ $\int\nolimits_{t_0}^{+\infty}t^{-2}{(n_1(t))^{\alpha}}dt<+\infty,$ $n_1(t)\overset{def}=\sum\nolimits_{\mu_n\leq t} 1,\quad t_0>0,$ then there exists set $E\subset\gamma_{+}(F),$\ that
 $\tau_{2p}(E\cap\gamma_{+}(F))=\int_{E\cap\gamma_{+}(F)}|z|^{-2p}dxdy\leq C_p, z=x+iy\in\mathbb{C}^p,$ relation $\mathfrak{M}(z,F)= o(\mu(z,F)\ln^{1/\alpha} \mu(z,F))$ holds as $z\to \infty$\ $(z\in \gamma_R\setminus E)$ each $R>0$, where
 $\gamma_R=\Big\{z\in\mathbb{C}^p\setminus\{0\}\colon\ K_F(z)\leq R \Big\},\quad K_F(z)=\sup\Big\{\frac1{\Phi_z( t)}\int^{ t}_0 \frac {{\Phi_z}(u)}{u} du\colon\ t \geq t_0\Big\},$ $\gamma(F)=\{z\in\mathbb{C}\colon \ \lim\limits_{t\to +\infty}\Phi_z(t)=+\infty\},\quad \gamma_+(F)=\mathop{\cup}_{R>0}\gamma_R$, $\Phi_z(t)=\frac1{t}\ln\mu(tz,F)$. In general, under specified conditions, obtained inequality exact.
منابع مشابه
Relative order and type of entire functions represented by Banach valued Dirichlet series in two variables
In this paper, we introduce the idea of relative order and type of entire functions represented by Banach valued Dirichlet series of two complex variables to generalize some earlier results. Proving some preliminary theorems on the relative order, we obtain sum and product theorems and we show that the relative order of an entire function represented by Dirichlet series is the same as that of i...
متن کاملGeneralized Ritt type and generalized Ritt weak type connected growth properties of entire functions represented by vector valued Dirichlet series
In this paper, we introduce the idea of generalized Ritt type and generalised Ritt weak type of entire functions represented by a vector valued Dirichlet series. Hence, we study some growth properties of two entire functions represented by a vector valued Dirichlet series on the basis of generalized Ritt type and generalised Ritt weak type.
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولrelative order and type of entire functions represented by banach valued dirichlet series in two variables
in this paper, we introduce the idea of relative order and type of entire functions represented by banach valued dirichlet series of two complex variables to generalize some earlier results.proving some preliminary theorems on the relative order, we obtain sum and product theorems and we show that the relative order of an entire function represented by dirichlet series is the same as that of it...
متن کاملMultiple Dirichlet Series
This introductory article aims to provide a roadmap to many of the interrelated papers in this volume and to a portion of the field of multiple Dirichlet series, particularly emerging new ideas. It is both a survey of the recent literature, and an introduction to the combinatorial aspects of Weyl group multiple Dirichlet series, a class of multiple Dirichlet series that are not Euler products, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Matemati?nì studìï
سال: 2023
ISSN: ['2411-0620', '1027-4634']
DOI: https://doi.org/10.30970/ms.59.2.178-186